

Study outcomes

The objective of this chapter is to explain the trading concepts, terminology, conventions, mathematical and theoretical foundations that are required to better understand the South African financial markets.

When you have studied this chapter you should

- be able to distinguish among the various types of financial market
- understand the securities trading process and its terminology and conventions
- know why clearing and settlement are vital in a well-functioning inancial system

Study outcomes

- know the various day count, annual basis and settlement conventions
- be familiar with concepts such as bids, offers, spreads, long versus short positions, spot versus forward markets, scrip dematerialisation, and others
- be able to discuss the different types of participant in the financial markets
- understand basic interest rate conventions and calculations
- be familiar with the time value of money concepts and calculations, and be able to apply them
- know the innovative financial market theories that have guided financial thought and decision making over the last 50 years.

© VAN SCHAIK PUBLISHERS

Introduction

Overview

- Financial market terminology
- Financial market participants
- · Mechanics of trading
- Mechanics of clearing and settlement
- The time value of money and its applications
- Term structure of interest rates
- Financial market theories

Financial market terminology Risk and return Figure 9.2 Risk and return of investments (Textbook page 205) Private equity 0 Propert 2 5 2 Long-term corporate 0 1 45 Retur bonds Long-term government bonds 10 Treasheyt-term government bonds 5 0 0 2 3 5 Ris © VAN SCHAIK PUBLISHERS

Financial market terminology

Risk and return

Measures of value

- Par value
- Market value
- Book value
- Fair (or economic or intrinsic) value

Measures of return

- Yield
- Required rate of return
- Holding period return (F.9.1)
 - Comparing HPRs for different holding periods (F.9.2)
- Other measures of return

Measures of risk

Mechanics of trading

Information providers

- Reuters
- Bloomberg

Trading terminology

Day count and annual basis conventions

Table 9.2 International day count conventions

A note on the ACT/360 convention

<u>F.9.3</u> <u>F.9.4</u>

- Settlement or value date
- Price quotations and spreads
- Short and long positions
- Trading versus banking book

© VAN SCHAIK PUBLISHERS

Mechanics of clearing and settlement

Concepts

- Immobilisation and dematerialisation of financial securities
- Settlement and custody of securities
- Central securities depository Strate
- Central securities depository participants
- The National Payment System
- SWIFT

The time value of money and its applications

Interest calculations

- Simple interest
 - Add-on instruments (F.9.5); (F.9.6)
 - Determining the simple interest annual rate of return
 (F.9.7); Box 9.1
 - Discount instruments (F.9.8); (F.9.9)
- What is the difference between discount and interest?

<u>F.9.10</u>

F.9.11

© VAN SCHAIK PUBLISHERS

The time value of money and its applications

Interest calculations

• Compound interest

- Determining the future value (F.9.12)

PV R5000	NAR		Period	n (years)	f (frequency)	Calculation	FV
	8,00%	NACA	3 yrs	3	1	5000 × (1 + 0,08)1×3	R6 298,56
R5000	8,00%	NACS	3 yrs	3	2	5000 × (1 + 0,08/2) ^{2×3}	R6 326,60
R5000	8,00%	NACQ	3 yrs	3	4	5000 × (1 + 0,08/4)4×3	R6 341,21
R5000	8,00%	NACM	3 yrs	3	12	5000 × (1 + 0,08/12) ^{12×3}	R6 351,19
R5000	8,00%	NACM	3 m	1/4	12	5000 × (1 + 0,08/12)12×0,25	R5 100,67
R5000	8,00%	NACQ	6 m	1/2	4	5000 × (1 + 0,08/4) ^{4×0,5}	R5 202,00
R5000	8,00%	NACQ	9 m	3/4	4	5000 × (1 + 0,08/12)4×0,75	R5 306,04
R5000	8,00%	NACS	9 m	3/4	2	5000 × (1 + 0,08/12) ^{2×0,75}	R5 302,98

The time value of money and its applications

Interest calculations
Compound interest

- Determining the present value from future value discounting (F.9.13)
- Determining the annual rate of return (F.9.14)
- Nominal versus effective interest rates (F.9.15)
- Annualising of returns
- Using the CAGR to smooth the volatility of periodic returns over a number of years
- From effective to nominal (F.9.16)
- Continuous compounding (F.9.17); (F.9.18)
- A note on compounding in South Africa

© VAN SCHAIK PUBLISHERS

The time value of money and its applications

Annuities

- Future value of an annuity (F.9.19); (F.9.20); (F9.21)
 - Future value of a growing annuity (F.9.21); (F.9.22)
- Present value of an annuity (F.9.23); (F.9.24)
- Present value of a growing annuity (F.9.25); (F.9.26)
- Perpetuities (F.9.27)
 - Present value of a growing perpetuity (F.9.28)
- Determining the other variables in annuity formulas (F.9.29)

The time value of money and its applications

Annuities

Present and future values of unequal cash flows

Table 9.5 Future values of unequal cash flows (Textbook page 234)

Time t (Year t)	Cash flow	Calculation	Future value at the end of t = 5 (year 5)
1	1 000	1 000 × (1 + 0,08) ⁴	1 360,49
2	2 000	2 000 × (1 + 0,08) ³	2 519,42
3	4 000	4 000 × (1 + 0,08) ²	4 665,60
4	5 000	5 000 × (1 + 0,08)1	5 400,00
5	6 000	6 000 × (1 + 0,08)°	6 000,00
Total future value of cash flows			19 945,51

© VAN SCHAIK PUBLISHERS

The time value of money and its applications

Annuities

Time t (Year t)	Cash flow	Calculation	Present value at time t = 0	
1	1 000	1 000/(1 + 0,08)1	925,93	
2	2 000	2 000/(1 + 0,08)2	1 714,68 3 175,33 3 675,15	
3	4 000	4 000/(1 + 0,08)3		
4	5 000	000 5 000/(1 + 0,08)4		
5	6 000	6 000/(1 + 0,08)5	4 083,50	
otal present value of	13 574,58			

Annuities

• Net present value (NPV)

Table 9.7 NPV of a property investment (Textbook page 235)

Time t	Cash flow	Calculation	PV with i = 10%	PV with i = 10,5385802970305%
0	-80 000	-80 000/(1 + i)°	-80 000,00	-80 000,00
1	-500 -500/(1 -		-454,55	-452,33
2	4 500	4 500/(1 + i) ²	3 719,01	3 682,86
3	5 500 5 500/(1 + i) ³		4 132,23	4 072,12
4	4 500 4 500/(1 + i) ⁴		3 073,56	3 014,10
5	115 000	115 000/(1 + i) ⁵	71 405,95	69 683,25
NPV			1 876,21	0

- NPV of a bond (F.9.30)
- Internal rate of return (F.9.31)

© VAN SCHAIK PUBLISHERS

Term structure of interest rates Yield to maturity Par yield Zero-coupon rate

Financial market theories

Markowitz: portfolio selection

Tobin: separation theorem

Modigliani and Miller: irrelevance theory

Sharpe: single index model

Fama: efficient markets hypothesis

© VAN SCHAIK PUBLISHERS

Financial market theories

Black and Scholes: option pricing model

Cox, Ross and Rubinstein: binomial option pricing model

Ross: arbitrage pricing theory

Behavioural finance

