A simple Keynesian model of the economy

Macroeconomic theory

• Macroeconomic theory vs. measurement (national accounts)

• *Macroeconomic theory*: purpose
 – explanation
 – prediction
 – policy

• *Keynesian model*: John Maynard Keynes (“Canes”)
 – emphasis on importance of aggregate demand
Macroeconomic equilibrium

• Total production, income and spending

• Production and income two sides of same coin
 – but will spending be equal to production and income?

• Three possibilities
 – when spending > production, production (and income) will tend to increase
 – when spending < production, production (and income) will tend to decrease
 – when spending = production and income, there is equilibrium (ie. no tendency to change)
• In symbols

A > Y → Y will tend to increase

A < Y → Y will tend to decrease

A = Y → equilibrium (no tendency to change)

Assumptions of basic model

• Households and firms only: no government or foreign sector

• Prices, wages and interest rates are given

• Spending (demand) is the driving force
Components of spending

\[C = \text{consumption spending (households)} \]

\[I = \text{investment spending (firms)} \]

\[C + I = A = \text{aggregate (total) spending (expenditure)} \]

Consumption function

- Relationship between consumption spending \((C)\) and income \((Y)\)

- \(C = f(Y)\); positive relationship; \(C\) increases as \(Y\) increases

- \(C\) positive, even if \(Y = 0\) (due to influence of other factors that determine \(C)\)

- When \(Y\) increases, \(C\) increases, but by less than the increase in \(Y\)
- **Autonomous C**
 - independent of Y
 - reflected in position of C function
 - position of C function determined by factors other than income (e.g., interest rates, wealth, expectations)
• **Induced C**
 - changes as Y changes
 - reflected in slope of C function
 - slope equal to marginal propensity to consume (c)
 - $c = \Delta C/\Delta Y = \text{slope of } C \text{ function}$

Autonomous and induced consumption
Equation for consumption function

• \(C = \overline{C} + cY \), where

• \(C \) = consumption spending by households

• \(\overline{C} \) = autonomous \(C \) (not related to \(Y \))

• \(c \) = marginal propensity to consume

• \(Y \) = income

• \(cY \) = induced consumption

Investment spending (\(I \))

• \(I \) = spending on capital goods by firms

• \(I \) depends on expected profitability (rather than \(Y \))

• \(I \) is thus autonomous with regard to (wrt) \(Y \)

• Equation:
 \(I = \bar{I} \) (autonomous wrt \(Y \))

Investment and the level of income
Aggregate spending (A)

- A represents total or aggregate demand in the economy
- $A = C + I$

The aggregate spending function

The basic Keynesian model

\[
A = C + I\\
C = \bar{C} + cY\\
I = \bar{I}
\]

- Equilibrium where $Y = A$
• 45° line represents all possible equilibrium points

The 45-degree line

• Equilibrium illustrated where \(Y = A \), ie where \(A \) intersects 45° line

The equilibrium level of income
The equilibrium level of income

Equilibrium level of income

- Equilibrium where \(Y = A \)
 \[
 A = C + I \\
 C = \bar{C} + cY \\
 I = \bar{I}
 \]

\[
Y = C + I = \bar{C} + cY + \bar{I} = \bar{C} + \bar{I} + cY
\]
\[... \ Y - cY = \bar{C} + \bar{I} \]
\[Y(1-c) = \bar{C} + \bar{I} \]
\[Y = (1/1-c)(\bar{C}+\bar{I}) \text{ (equilibrium level of } Y) \]
\[= \alpha \bar{A}, \text{ where} \]
\[\alpha = 1/1-c \text{ (the multiplier)} \]
\[\bar{A} = \bar{C} + \bar{I} \text{ (autonomous spending)} \]

Equilibrium: numerical example

- Suppose \(C = 500 + 0.8Y\) and \(I = 300\)
- At equilibrium: \(Y = A\)
 \[Y = C + I\]
 \[= 500 + 0.8Y + 300\]
 \[= 800 + 0.08Y\]
 \[\Rightarrow 0.2Y = 800\]
 \[0.2Y = 800\]
 \[Y = 800/0.2\]
 \[= 4000\]
The impact of a change in investment spending: the multiplier

The multiplier process

<table>
<thead>
<tr>
<th>Round number</th>
<th>Additional spending and income in this round (R millions)</th>
<th>Cumulative total (R millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>2</td>
<td>7.2</td>
<td>19.2</td>
</tr>
<tr>
<td>3</td>
<td>4.32</td>
<td>23.52</td>
</tr>
<tr>
<td>4</td>
<td>2.592</td>
<td>26.112</td>
</tr>
<tr>
<td>5</td>
<td>1.5552</td>
<td>27.6672</td>
</tr>
<tr>
<td>6</td>
<td>0.93312</td>
<td>28.60032</td>
</tr>
<tr>
<td>7</td>
<td>0.559872</td>
<td>29.160192</td>
</tr>
<tr>
<td>8</td>
<td>0.3359232</td>
<td>29.4961152</td>
</tr>
<tr>
<td>9</td>
<td>0.2015539</td>
<td>29.6976691</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>...</td>
<td>30.0</td>
</tr>
</tbody>
</table>

The multiplier chain of spending and income
The multiplier: a summary

[Diagram showing aggregate spending and total production, income with labeled points and variables.]